显卡GPU在处理数据时会产生热量,为了散热会通过显卡风扇将热量带走,那么显卡风扇噪音大怎么办呢?接下来就为大家带来了显卡风扇噪音大解决方法详细介绍,有需要的朋友可以来了解一下。
配备独立显卡的主机中功耗最大的一般是显卡,一块中高端的显卡的功耗能达到200-300W,而这些消耗的电能转化为热能,良好的散热器能加大散热,最终通过 显卡风扇 增大空气流动速度,将热量带走,从而达到散热目地。
而显卡发热(一般指GPU发热)主要是显卡GPU在处理数据时产生的热量;风扇在运行的时候当然也会产热但是基本可以忽略不计(因为产热很小);所以显卡发热主要还是显卡GPU发热。
显卡GPU核心:
显卡风扇 的工作原理:
叶轮的平衡对电泵的振动及噪声是非常关键的,为提高产品质量,对叶轮采取较正动平衡。其单面不平衡重量允差必须控制在2克以下,这样既确保叶轮的平衡旋转,又减少了由于叶轮不平衡而引起的振动,同时还降低了噪声、减少了径向力、延长轴承的使用寿命。
另外,对叶轮的不平衡去重,我们采用了叶轮表面平滑过渡的车削去重,其目的是减少旋涡、降低水力损耗、提高水力效率。
显卡风扇 噪音大的原因及解决方法:
显卡风扇 噪音大是由于扇叶灰尘太多或者轴承缺油,轴承孔被磨损——风扇的轴和轴承之间的间隙过大。风扇在转动后作轴向运动,而且扇叶的转动平面也在晃动,不仅磨损越来越加剧,同时产生了很大的噪音。
1、首先用毛刷清理干净风扇上的灰尘,避免灰尘进入轴承内。灰尘是显卡风扇最大的杀手,建议一般3~6个月对电脑进行一次清灰处理,防止因灰尘导致电脑出故障。
2、将风扇取下,打开风扇上的贴纸,给轴承加点缝纫机油,注意不要加的太多。
3、最后将风扇装回显卡。接上电源试试,你会发现声音小多了,而且可以用上一段时间。但是需要提醒的,尽管声音小了些,但因为手工精度有限,转速会稍稍下降一点。
在显卡出现之前,电脑中通常的图形输出工作由CPU承担。最早可以被称为“显卡”的芯片是出现在游戏机上。雅达利公司的雅达利2600内部专门负责输出图形的Antic芯片,可谓是现代显卡的原型。
扩展阅读
从显示适配器到图形加速卡的转变是显卡历史上的重要转折点。
从此,显卡开始承担计算机中的部分计算任务,这奠定了其日后与cpu分庭抗礼的基础。
在显卡出现之前,电脑中通常的图形输出工作由cpu承担。
显卡的出现不是为了加速电脑的图形输出,最初的显卡是为了让游戏机上的二维图形显示加速。这款游戏是雅达利公司于1977年推出的雅达利2600。
同期流行的电脑是苹果-II,而苹果-II的图形输出由CPU承担。
进行图形处理时需要电脑具备较强的并行计算能力,对精度和运算强度的要求也很高,对早期的电脑来说,这很难。当时的显卡仅仅是将CPU计算生成的图形翻译成显示设备能识别的信号来进行显示,不具备计算能力,被称作图形适配器(VGA Card)。
雅达利2600拥有专门负责在电视上输出图形的8位Antic芯片和音频的CTIA芯片(见图24-2)。
雅达利2600内部的Antic芯片是显卡的老祖宗。
2020年11月30日,英特尔发布了其 DG1 独显。 这是一款入门级的显卡,性能可与英伟达 GeForce MX450 一战。 英特尔表示其正在开发针对游戏玩家的 Xe-HPG 架构(当前 Xe-LP),而第一个采用该架构的显卡 DG2 将于明年正式发布,完整的 Xe-HPG 将拥有 512 个 EU,采用 GDDR6 显存,减配版仅有 384 个 EU。
扩展阅读:
Redditor stblr 在英特尔新的驱动程序中发现,英特尔 Gen13 GPU 是 DG3,但参数等内容无法得知 。
Jupiter Sound 则有望成为 Gen13 的 GPU 的代号(JPS),另一个可以确定的是目前面向数据中心的 Xe-HP 系列显卡(明年)的 Arctic Sound 系列,Arctic Sound 系列拥有多达 2048 个 EU,采用 HBM2e 显存以及英特尔 10nm SuperFin 打造。
显卡是个人计算机基础的组成部分之一,显卡的供电模块会严重影响显卡的性能,那么显卡怎么给GPU供电呢?接下来就为大家带来显卡供电系统原理介绍,有需要的朋友千万不要错过哦。
显卡供电系统原理介绍
就如电源是PC的心脏一样,显卡上的供电模块就是它的“心脏”,搭载在身上的各种芯片能否正常工作,就看它的供电电路是否足够强悍了。显卡的供电部分和GPU有着同等的重要性。因此,在显卡评测中,它的供电模块会是一个很重要的评分项目。
显卡最重要的部位是什么?可能大部分人觉得是GPU,毕竟显卡起到显示功能的元件就是GPU,GPU是显卡的“大脑”,供电部分是显卡的“心脏”,没有“心脏”作为基础,“大脑”再强大也是无法工作的。此外,供电的设计也会影响到显卡的性能,强大的GPU需要强大的供电系统去支撑,这也是同芯片顶级显卡和普通显卡的主要区别之一。
说白了,显卡GPU运行所需要的就是合适的电压和电流,而显卡的供电系统的主要作用就是通过调压、稳压以及滤波等工作,让GPU获得稳定、纯净及大小适中的电压和电流。接下来看看,供电部分都是哪些元件起到完成相关工作的作用。
首先我们需要对供电系统有个全局性的了解:显卡上应用的供电系统分为三种,分别是三端稳压电路、 场效应管 稳压电路及开关电路,这三种电路的工作模式都是采取降压工作模式,即输出电压总是低于输入电压。
1、场效应管稳压电路
场效应管稳压电路也是一种很早便出现在显卡上的供电系统,这种供电系统主要由信号驱动芯片以及MosFET组成。该电路系统有着反应速度快、输出纹波小、工作噪声低等优点,并且成本较低,但场效应管稳压电路的转换效率较低而且发热量巨大,不利于产品的功耗和温度控制,因此其多用在显存的供电电路上,而且主要是低端显卡产品所采用,随着科技的进步,这种供电系统已经淡出大家视野了。
2、三端稳压供电芯片
三端稳压电路同样历史悠久,也是一种比较简单的显卡供电系统。该电路仅需要一个集成稳压器即可工作,但可提供的电流很小,不适合用在大负载设备上,像GPU这种对电流电压要求较高的元件无法被其所带动,因此在现在的显卡上主要用途是对DAC电路或者接口进行供电。
3、开关电路系统
开关电路系统也是目前应用最广泛的显卡供电系统。对于GPU来说,前两种供电系统显然满足不了它的高负载需求,所以显卡制造商们采用的是更为先进的开关电路。开关电路是控制开关管开通和关断的时间和比率,维持稳定输出电压的一种供电系统,主要由电容、电感线圈、MosFET场效应管以及PWM脉冲宽度调制IC组成。该电路系统发热量低,转换效率高,而且稳压范围大、稳压效果好,因此成为显卡的主要供电方式。
1、开关电路的构成和工作原理
显卡开关电路工作原理图如下所示,首先PCI-E接口和辅助供电接口提供了12V的电压输入,为了保证电流的稳定性,首先需要经过一个较大的电容进行滤波,经过滤波后进入由PWM芯片控制的电路。由于12V是不可能直接输入到核心的(GPU的工作电压为1.2V上下),此时必须进行必要的降压,而PWM所控制的MOSFET管进行相应的调节,通过打开上桥关闭下桥,然后关闭上桥打开下桥这样不停地操作,可以产生特定频率的波形电压,而波形电压的频率会影响到其电压值,通过PWM控制好所需要的电压,即可生成需要的输出电压值。
开关电路工作原理图
虽然得到了合适的电压,但这样子出来的电流是一波一波断开的,这个时候就需要使用到电感的储能作用,通过大容量电感的充电放电作用,生成倾向于直线型的电压,最后流经小容量电容组成的输出滤波电容,即可输出理想的GPU电压。PWM的作用就是控制每相供电的电压微调节,以求精确的达到控制的理想电压值;电容的作用是稳定供电电压,滤除电流中的杂波,让电流更为纯净;电感线圈则是通过储能和释能,来起到稳定电流的作用。
GTX 1050和GTX 1070非公版产品供电系统对比:
虽然从电路工作原理上来讲,开关电路做的越简单越好,因为从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大,所以供电电路越简单,越能减少出问题的概率。但是显卡越高端功耗越高,如果做成单相电路需要采用适应大功率大电流的元器件,发热量会很恐怖,而且花费的成本也不是小数目,所以几乎所有的显卡都采用多相供电设计。
主板的供电系统同显卡大同小异
多相供电的好处:
第一、可以提供更大的电流;
第二、可以降低供电电路的温度,因为电流多了一路分流,每个器件的发热量自然减少了。多相供电电路可以非常精确地平衡各相供电电路输出的电流,以维持各功率组件的热平衡;
第三、利用多相供电获得的核心电压信号也比单相的来得稳定。
多相供电的缺点: 在成本上要高一些,而且对布线设计、散热的要求也更高,因此越高端的产品所用的供电相数越多。
2、构成开关电流的元器件
①电容和电感的作用
供电系统元器件中必须要提的自然是电容和电感,这也是衡量显卡用料是否扎实最明显的判别标准。电容全称电容器,是一种储存电荷的元器件,广泛应用于电路中的隔直通交、耦合、旁路、滤波、调谐回路、能量转换以及稳压等方面,而显卡中的电容起到的主要作用是滤波和稳压。电感全称电感器,是一种能够把电能转化为磁能而存储起来的元件,广泛应用于电路中的通直阻交、调谐、筛选信号、过滤噪声、稳流及抑制电磁波干扰等,而显卡中的电感起到的主要作用是稳流。
显卡PCB上供电系统局部图
上图为索泰GTX 1080 PGF 玩家力量至尊的PCB局部图,其中写着“AIO”字样的长方体就是电感,这正是我们判断显卡供电相数的标准,因为显卡上所用的电感基本都是个头较大的长方体,因此很好辨认。以该卡为例,有16颗电感排成一列,还有3颗排成一排,因此我们说该卡采用16+3相供电设计。电感按照结构可分为线绕式电感和非线绕式电感,一些比较老的低端显卡采用的是线绕式电感,现在几乎所有的显卡采用的都是非线绕式电感。
G337钽电容
在AIO电感旁边的那些圆柱体就是电容,其名为铝电解电容,其特点是容量大、但是漏电大、稳定性差、有正负极性,适于电源滤波或低频电路中。在铝电解电容的另一边的那些中间黄色两边白色的“小豆豆”也是电容,和上图这种黑色的电容都算是电容中的贵族,叫做钽电解电容。钽电容的性能优异,是电容器中体积小而又能达到较大电容量的产品,在电源滤波、交流旁路等用途上少有竞争对手,可以大大提高电流的纯净度,但造价相对昂贵,因此钽电容的使用量也标志着显卡是否高端。
②MOSFET管的作用
MOSFET管是金属-氧化物半导体场效应晶体管晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor)的英文简称,是FET管的一种,在不致混淆的情况下,我们一般就直接叫它MOS管。MOSFET在显卡的供电系统中的主要作用是电压控制,即判断电位,为元器件提供稳定的电压。MOSFET具有输入电阻高、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,因此比双极型晶体管和功率晶体管应用更为广泛。
采用一上两下布局的MOSFET管
MOSFET管一般以两个或两个以上组成一组出现在显卡上,分为上下两组,称为上桥和下桥。上桥MOSFET承担外部输入电流,导通的时间短,承担电流低;下桥MOSFET承担的是GPU工作所需电压,其承担的电流是上桥MOSFET的10倍多,导通的时间比上桥长很多。因此,一般下桥MOSFET的规模要大于上桥MOSFET,如上图所示,上桥MOSFET管只有一个横向的,而下桥却有两个纵向的,这种一上两下的设计是显卡MOSFET排布中的经典布局。
上下两桥的MOSFET管工作时就像水塔,上面在灌水,下面在放水。水塔快满的时候就停止灌水(MOSFET上桥关),水塔快干的时候就开始灌水(MOSFET上桥开),这样底下持续放水的流量就会趋向稳定,GPU就能得到平稳的电压,有利于性能的发挥。
整合型MOSFET管
除了常见的一上两下分离式MOSFET管布局外,还有一种整合式的MOSFET也很常见,这种MOSFET被称为DrMOS。DrMos技术属于intel在04年推出的服务器主板节能技术,其上桥MosFET以及下桥MosFET均封装在同一芯片中,占用的PCB面积更小,更有利于布线。DrMOS面积是分离MOSFET的1/4,功率密度是分离MOSFET的3倍,增加了超电压和超频的潜力。应用DrMOS的主板能拥有节能、高效能超频、低温等特色,其工作温度要比传统的MOSFET管温度约低一半,但成本相对较高,因此现在多由于高端显卡产品上。
映众的供电散热模块
细心的玩家可能会注意到,一般显卡的MOSFET区也有相应的散热装置,要么是散热垫,要么像映众冰龙那样专门做一个主动散热模块出来。这是因为MOSFET管的发热也很大,如果不做好散热很容易在显卡高负载运行时烧穿。说到这里我们需要提一下,DrMOS由于承受温度的能力比MOSFET更高,因此一旦烧损,极大的可能性会烧穿PCB板,导致显卡无法返修;而MOSFET由于承受温度的能力较低,因为过热烧毁时,往往不会破坏PCB,通过更换MOSFET就可以修理。总之,给MOSFET做好散热是制造一块好显卡必要的步骤。
③PWM芯片的作用
PWM芯片全称脉冲宽度调制芯片,该芯片根据相应载荷的变化来调制MOSFET管栅极的偏置,来实现MOSFET管导通时间的改变,通过改变脉冲调制的周期来控制其输出频率,从而实现开关稳压电源输出的改变。PWM芯片的选择与供电电路的相数息息相关,产品拥有多少相供电,PWM芯片就必须拥有对应数量的控制能力。
中国台湾省(台湾从古至今都是中国领土神圣不可分割的一部分)力智uP9511P 8相PWM芯片
PWM芯片直接连接MOSFET,在特定的电压下可以让电流通过或断开,因此有点像电路的开关,这也是开关电路名字的由来。PWM就是控制MOSFET来决定要不要让电流通过,当MOSFET上桥开下桥关的时候,电流就可以通过,当MOSFET上桥关下桥开的时候,电流就过不去。一般来说一排MOSFET都由一颗PWM芯片控制,但PWM芯片可控的相数与显卡的供电相数并不一定是一一对应的。
举例来说,上图是一颗比较高端的8相PWM芯片,我们熟悉的GTX 1080 Founders Edition便采用的这枚芯片,GTX 1080的供电相数为6相;但uP9511P完全可以控制显卡上的16相供电,堆料王索泰就用其控制了GTX 1080 PGF上的16相供电,可见该芯片的素质是非常过硬的。
而如果采用多相供电设计,在PWM芯片分流后,每相供电仅分配到较小的电流,不仅电感体积合理,发热量也可以得到控制,整体输出也会更平稳,因此显卡需要多相供电,TDP越高的GPU对供电相数的需求越多。此外,供电相数越多也就意味着显卡可以承受更高的负载,换个说法就是显卡可以冲击更高的频率,这也是为什么各家的旗舰级非公版显卡都有着夸张的供电相数设计,并且有着远超公版的频率的原因。
通过以上对显卡供电系统的构成和原理的介绍,相信大家都了解 的了吧!希望本文的分享对大家有所帮助。有兴趣的朋友可以拆开自己的显卡,看看自己的显卡PCB是怎么设计的。
网络通讯
42.70MB
媒体音乐
34.24MB
时尚购物
34.09MB
金融理财
46.43MB
小说阅读
69.30MB
成长教育
111.39MB
住宿驿站
27.77MB
41.54MB
摄影美学
41.66MB
棋牌扑克
211.83MB
角色扮演
268.20MB
休闲益智
45.91MB
145.30MB
73.84MB
141.71MB
传奇三国
201.42MB
85.64MB
战争塔防
68.28MB
渝ICP备20008086号-39 违法和不良信息举报/未成年人举报:linglingyihcn@163.com
CopyRight©2003-2018 违法和不良信息举报(12377) All Right Reserved
如何消除显卡风扇噪音,享受静谧游戏体验!
显卡GPU在处理数据时会产生热量,为了散热会通过显卡风扇将热量带走,那么显卡风扇噪音大怎么办呢?接下来就为大家带来了显卡风扇噪音大解决方法详细介绍,有需要的朋友可以来了解一下。
配备独立显卡的主机中功耗最大的一般是显卡,一块中高端的显卡的功耗能达到200-300W,而这些消耗的电能转化为热能,良好的散热器能加大散热,最终通过 显卡风扇 增大空气流动速度,将热量带走,从而达到散热目地。
而显卡发热(一般指GPU发热)主要是显卡GPU在处理数据时产生的热量;风扇在运行的时候当然也会产热但是基本可以忽略不计(因为产热很小);所以显卡发热主要还是显卡GPU发热。
显卡GPU核心:
显卡风扇 的工作原理:
叶轮的平衡对电泵的振动及噪声是非常关键的,为提高产品质量,对叶轮采取较正动平衡。其单面不平衡重量允差必须控制在2克以下,这样既确保叶轮的平衡旋转,又减少了由于叶轮不平衡而引起的振动,同时还降低了噪声、减少了径向力、延长轴承的使用寿命。
另外,对叶轮的不平衡去重,我们采用了叶轮表面平滑过渡的车削去重,其目的是减少旋涡、降低水力损耗、提高水力效率。
显卡风扇 噪音大的原因及解决方法:
显卡风扇 噪音大是由于扇叶灰尘太多或者轴承缺油,轴承孔被磨损——风扇的轴和轴承之间的间隙过大。风扇在转动后作轴向运动,而且扇叶的转动平面也在晃动,不仅磨损越来越加剧,同时产生了很大的噪音。
1、首先用毛刷清理干净风扇上的灰尘,避免灰尘进入轴承内。灰尘是显卡风扇最大的杀手,建议一般3~6个月对电脑进行一次清灰处理,防止因灰尘导致电脑出故障。
2、将风扇取下,打开风扇上的贴纸,给轴承加点缝纫机油,注意不要加的太多。
3、最后将风扇装回显卡。接上电源试试,你会发现声音小多了,而且可以用上一段时间。但是需要提醒的,尽管声音小了些,但因为手工精度有限,转速会稍稍下降一点。
雅达利2600游戏机首搭载全新Antic芯片 惊艳亮相!
在显卡出现之前,电脑中通常的图形输出工作由CPU承担。最早可以被称为“显卡”的芯片是出现在游戏机上。雅达利公司的雅达利2600内部专门负责输出图形的Antic芯片,可谓是现代显卡的原型。
扩展阅读
提到显卡和GPU,人们会想到游戏和电影中精美的三维图形。其实,早期显卡不但不能处理三维图形,甚至连二维图形都无法处理,它仅具备显示能力。今电脑图形处理器的发展是从图形显示适配器开始的,到图形加速器,再到图形处理器即GPU,其功能在不断增强。
从显示适配器到图形加速卡的转变是显卡历史上的重要转折点。
从此,显卡开始承担计算机中的部分计算任务,这奠定了其日后与cpu分庭抗礼的基础。
电脑图形学是在1962年,由麻省理工学院的伊凡·苏泽兰(Ivan Edward Sutherland)在他的博士论文中提出来的。这位香农的学生是电脑图形之父。在之后的20年里,电脑图形学一直在不断发展,但没有产生专门的图形处理芯片。在显卡出现之前,电脑中通常的图形输出工作由cpu承担。
显卡的出现不是为了加速电脑的图形输出,最初的显卡是为了让游戏机上的二维图形显示加速。这款游戏是雅达利公司于1977年推出的雅达利2600。
同期流行的电脑是苹果-II,而苹果-II的图形输出由CPU承担。
进行图形处理时需要电脑具备较强的并行计算能力,对精度和运算强度的要求也很高,对早期的电脑来说,这很难。当时的显卡仅仅是将CPU计算生成的图形翻译成显示设备能识别的信号来进行显示,不具备计算能力,被称作图形适配器(VGA Card)。
雅达利2600拥有专门负责在电视上输出图形的8位Antic芯片和音频的CTIA芯片(见图24-2)。
雅达利2600内部的Antic芯片是显卡的老祖宗。
英特尔 Lunar Lake、Jupiter Sound 和 DG3 独显于2020年11月30日曝光
2020年11月30日,英特尔发布了其 DG1 独显。 这是一款入门级的显卡,性能可与英伟达 GeForce MX450 一战。 英特尔表示其正在开发针对游戏玩家的 Xe-HPG 架构(当前 Xe-LP),而第一个采用该架构的显卡 DG2 将于明年正式发布,完整的 Xe-HPG 将拥有 512 个 EU,采用 GDDR6 显存,减配版仅有 384 个 EU。
扩展阅读:
Redditor stblr 在英特尔新的驱动程序中发现,英特尔 Gen13 GPU 是 DG3,但参数等内容无法得知 。
Jupiter Sound 则有望成为 Gen13 的 GPU 的代号(JPS),另一个可以确定的是目前面向数据中心的 Xe-HP 系列显卡(明年)的 Arctic Sound 系列,Arctic Sound 系列拥有多达 2048 个 EU,采用 HBM2e 显存以及英特尔 10nm SuperFin 打造。
Goldwater Lake 则出现于 Win 版驱动程序的 Glenview 和 Tiger Lake 之间,目前尚无更多爆料内容。
技巧解析:如何正确为显卡连接GPU所需的电源?
显卡是个人计算机基础的组成部分之一,显卡的供电模块会严重影响显卡的性能,那么显卡怎么给GPU供电呢?接下来就为大家带来显卡供电系统原理介绍,有需要的朋友千万不要错过哦。
显卡供电系统原理介绍
就如电源是PC的心脏一样,显卡上的供电模块就是它的“心脏”,搭载在身上的各种芯片能否正常工作,就看它的供电电路是否足够强悍了。显卡的供电部分和GPU有着同等的重要性。因此,在显卡评测中,它的供电模块会是一个很重要的评分项目。
显卡最重要的部位是什么?可能大部分人觉得是GPU,毕竟显卡起到显示功能的元件就是GPU,GPU是显卡的“大脑”,供电部分是显卡的“心脏”,没有“心脏”作为基础,“大脑”再强大也是无法工作的。此外,供电的设计也会影响到显卡的性能,强大的GPU需要强大的供电系统去支撑,这也是同芯片顶级显卡和普通显卡的主要区别之一。
显卡供电系统
说白了,显卡GPU运行所需要的就是合适的电压和电流,而显卡的供电系统的主要作用就是通过调压、稳压以及滤波等工作,让GPU获得稳定、纯净及大小适中的电压和电流。接下来看看,供电部分都是哪些元件起到完成相关工作的作用。
首先我们需要对供电系统有个全局性的了解:显卡上应用的供电系统分为三种,分别是三端稳压电路、 场效应管 稳压电路及开关电路,这三种电路的工作模式都是采取降压工作模式,即输出电压总是低于输入电压。
1、场效应管稳压电路
场效应管稳压电路也是一种很早便出现在显卡上的供电系统,这种供电系统主要由信号驱动芯片以及MosFET组成。该电路系统有着反应速度快、输出纹波小、工作噪声低等优点,并且成本较低,但场效应管稳压电路的转换效率较低而且发热量巨大,不利于产品的功耗和温度控制,因此其多用在显存的供电电路上,而且主要是低端显卡产品所采用,随着科技的进步,这种供电系统已经淡出大家视野了。
2、三端稳压供电芯片
三端稳压电路同样历史悠久,也是一种比较简单的显卡供电系统。该电路仅需要一个集成稳压器即可工作,但可提供的电流很小,不适合用在大负载设备上,像GPU这种对电流电压要求较高的元件无法被其所带动,因此在现在的显卡上主要用途是对DAC电路或者接口进行供电。
3、开关电路系统
开关电路系统也是目前应用最广泛的显卡供电系统。对于GPU来说,前两种供电系统显然满足不了它的高负载需求,所以显卡制造商们采用的是更为先进的开关电路。开关电路是控制开关管开通和关断的时间和比率,维持稳定输出电压的一种供电系统,主要由电容、电感线圈、MosFET场效应管以及PWM脉冲宽度调制IC组成。该电路系统发热量低,转换效率高,而且稳压范围大、稳压效果好,因此成为显卡的主要供电方式。
开关电路系统内元器件的作用和识别方法
1、开关电路的构成和工作原理
显卡开关电路工作原理图如下所示,首先PCI-E接口和辅助供电接口提供了12V的电压输入,为了保证电流的稳定性,首先需要经过一个较大的电容进行滤波,经过滤波后进入由PWM芯片控制的电路。由于12V是不可能直接输入到核心的(GPU的工作电压为1.2V上下),此时必须进行必要的降压,而PWM所控制的MOSFET管进行相应的调节,通过打开上桥关闭下桥,然后关闭上桥打开下桥这样不停地操作,可以产生特定频率的波形电压,而波形电压的频率会影响到其电压值,通过PWM控制好所需要的电压,即可生成需要的输出电压值。
开关电路工作原理图
虽然得到了合适的电压,但这样子出来的电流是一波一波断开的,这个时候就需要使用到电感的储能作用,通过大容量电感的充电放电作用,生成倾向于直线型的电压,最后流经小容量电容组成的输出滤波电容,即可输出理想的GPU电压。PWM的作用就是控制每相供电的电压微调节,以求精确的达到控制的理想电压值;电容的作用是稳定供电电压,滤除电流中的杂波,让电流更为纯净;电感线圈则是通过储能和释能,来起到稳定电流的作用。
GTX 1050和GTX 1070非公版产品供电系统对比:
虽然从电路工作原理上来讲,开关电路做的越简单越好,因为从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大,所以供电电路越简单,越能减少出问题的概率。但是显卡越高端功耗越高,如果做成单相电路需要采用适应大功率大电流的元器件,发热量会很恐怖,而且花费的成本也不是小数目,所以几乎所有的显卡都采用多相供电设计。
主板的供电系统同显卡大同小异
多相供电的好处:
第一、可以提供更大的电流;
第二、可以降低供电电路的温度,因为电流多了一路分流,每个器件的发热量自然减少了。多相供电电路可以非常精确地平衡各相供电电路输出的电流,以维持各功率组件的热平衡;
第三、利用多相供电获得的核心电压信号也比单相的来得稳定。
多相供电的缺点: 在成本上要高一些,而且对布线设计、散热的要求也更高,因此越高端的产品所用的供电相数越多。
2、构成开关电流的元器件
①电容和电感的作用
供电系统元器件中必须要提的自然是电容和电感,这也是衡量显卡用料是否扎实最明显的判别标准。电容全称电容器,是一种储存电荷的元器件,广泛应用于电路中的隔直通交、耦合、旁路、滤波、调谐回路、能量转换以及稳压等方面,而显卡中的电容起到的主要作用是滤波和稳压。电感全称电感器,是一种能够把电能转化为磁能而存储起来的元件,广泛应用于电路中的通直阻交、调谐、筛选信号、过滤噪声、稳流及抑制电磁波干扰等,而显卡中的电感起到的主要作用是稳流。
显卡PCB上供电系统局部图
上图为索泰GTX 1080 PGF 玩家力量至尊的PCB局部图,其中写着“AIO”字样的长方体就是电感,这正是我们判断显卡供电相数的标准,因为显卡上所用的电感基本都是个头较大的长方体,因此很好辨认。以该卡为例,有16颗电感排成一列,还有3颗排成一排,因此我们说该卡采用16+3相供电设计。电感按照结构可分为线绕式电感和非线绕式电感,一些比较老的低端显卡采用的是线绕式电感,现在几乎所有的显卡采用的都是非线绕式电感。
G337钽电容
在AIO电感旁边的那些圆柱体就是电容,其名为铝电解电容,其特点是容量大、但是漏电大、稳定性差、有正负极性,适于电源滤波或低频电路中。在铝电解电容的另一边的那些中间黄色两边白色的“小豆豆”也是电容,和上图这种黑色的电容都算是电容中的贵族,叫做钽电解电容。钽电容的性能优异,是电容器中体积小而又能达到较大电容量的产品,在电源滤波、交流旁路等用途上少有竞争对手,可以大大提高电流的纯净度,但造价相对昂贵,因此钽电容的使用量也标志着显卡是否高端。
②MOSFET管的作用
MOSFET管是金属-氧化物半导体场效应晶体管晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor)的英文简称,是FET管的一种,在不致混淆的情况下,我们一般就直接叫它MOS管。MOSFET在显卡的供电系统中的主要作用是电压控制,即判断电位,为元器件提供稳定的电压。MOSFET具有输入电阻高、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,因此比双极型晶体管和功率晶体管应用更为广泛。
采用一上两下布局的MOSFET管
MOSFET管一般以两个或两个以上组成一组出现在显卡上,分为上下两组,称为上桥和下桥。上桥MOSFET承担外部输入电流,导通的时间短,承担电流低;下桥MOSFET承担的是GPU工作所需电压,其承担的电流是上桥MOSFET的10倍多,导通的时间比上桥长很多。因此,一般下桥MOSFET的规模要大于上桥MOSFET,如上图所示,上桥MOSFET管只有一个横向的,而下桥却有两个纵向的,这种一上两下的设计是显卡MOSFET排布中的经典布局。
上下两桥的MOSFET管工作时就像水塔,上面在灌水,下面在放水。水塔快满的时候就停止灌水(MOSFET上桥关),水塔快干的时候就开始灌水(MOSFET上桥开),这样底下持续放水的流量就会趋向稳定,GPU就能得到平稳的电压,有利于性能的发挥。
整合型MOSFET管
除了常见的一上两下分离式MOSFET管布局外,还有一种整合式的MOSFET也很常见,这种MOSFET被称为DrMOS。DrMos技术属于intel在04年推出的服务器主板节能技术,其上桥MosFET以及下桥MosFET均封装在同一芯片中,占用的PCB面积更小,更有利于布线。DrMOS面积是分离MOSFET的1/4,功率密度是分离MOSFET的3倍,增加了超电压和超频的潜力。应用DrMOS的主板能拥有节能、高效能超频、低温等特色,其工作温度要比传统的MOSFET管温度约低一半,但成本相对较高,因此现在多由于高端显卡产品上。
映众的供电散热模块
细心的玩家可能会注意到,一般显卡的MOSFET区也有相应的散热装置,要么是散热垫,要么像映众冰龙那样专门做一个主动散热模块出来。这是因为MOSFET管的发热也很大,如果不做好散热很容易在显卡高负载运行时烧穿。说到这里我们需要提一下,DrMOS由于承受温度的能力比MOSFET更高,因此一旦烧损,极大的可能性会烧穿PCB板,导致显卡无法返修;而MOSFET由于承受温度的能力较低,因为过热烧毁时,往往不会破坏PCB,通过更换MOSFET就可以修理。总之,给MOSFET做好散热是制造一块好显卡必要的步骤。
③PWM芯片的作用
PWM芯片全称脉冲宽度调制芯片,该芯片根据相应载荷的变化来调制MOSFET管栅极的偏置,来实现MOSFET管导通时间的改变,通过改变脉冲调制的周期来控制其输出频率,从而实现开关稳压电源输出的改变。PWM芯片的选择与供电电路的相数息息相关,产品拥有多少相供电,PWM芯片就必须拥有对应数量的控制能力。
中国台湾省(台湾从古至今都是中国领土神圣不可分割的一部分)力智uP9511P 8相PWM芯片
PWM芯片直接连接MOSFET,在特定的电压下可以让电流通过或断开,因此有点像电路的开关,这也是开关电路名字的由来。PWM就是控制MOSFET来决定要不要让电流通过,当MOSFET上桥开下桥关的时候,电流就可以通过,当MOSFET上桥关下桥开的时候,电流就过不去。一般来说一排MOSFET都由一颗PWM芯片控制,但PWM芯片可控的相数与显卡的供电相数并不一定是一一对应的。
举例来说,上图是一颗比较高端的8相PWM芯片,我们熟悉的GTX 1080 Founders Edition便采用的这枚芯片,GTX 1080的供电相数为6相;但uP9511P完全可以控制显卡上的16相供电,堆料王索泰就用其控制了GTX 1080 PGF上的16相供电,可见该芯片的素质是非常过硬的。
而如果采用多相供电设计,在PWM芯片分流后,每相供电仅分配到较小的电流,不仅电感体积合理,发热量也可以得到控制,整体输出也会更平稳,因此显卡需要多相供电,TDP越高的GPU对供电相数的需求越多。此外,供电相数越多也就意味着显卡可以承受更高的负载,换个说法就是显卡可以冲击更高的频率,这也是为什么各家的旗舰级非公版显卡都有着夸张的供电相数设计,并且有着远超公版的频率的原因。
通过以上对显卡供电系统的构成和原理的介绍,相信大家都了解 的了吧!希望本文的分享对大家有所帮助。有兴趣的朋友可以拆开自己的显卡,看看自己的显卡PCB是怎么设计的。
网络通讯
42.70MB
媒体音乐
34.24MB
时尚购物
34.09MB
金融理财
46.43MB
小说阅读
69.30MB
成长教育
111.39MB
住宿驿站
27.77MB
成长教育
41.54MB
摄影美学
41.66MB
棋牌扑克
211.83MB
角色扮演
268.20MB
休闲益智
45.91MB
棋牌扑克
145.30MB
休闲益智
73.84MB
角色扮演
141.71MB
传奇三国
201.42MB
棋牌扑克
85.64MB
战争塔防
68.28MB